

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P\_0058

1 of 1

| ample ID: SA-240502-<br>Batch: 100700<br>ype: Finished Product<br>1atrix: Plant - Flower<br>Init Mass (g):                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Collected: 05/01/2024 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client<br>MODUS<br>5143 Port Chicago Hwy, Suite C<br>Concord, CA 94520<br>USA                                                                                                                                                   |                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Summe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Summa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Test<br>Cannabinoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date Tested<br>05/24/2024                                                                                                                                                                                                       | Status<br>Tested                                                                                                                                                                                                                                                    |
| G                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05/17/2024                                                                                                                                                                                                                      | Tested                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| 0.319 %                                                                                                                                                                                                              | 12.7 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.8 %                | 8.95 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Tested                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |
| Δ9-THC                                                                                                                                                                                                               | Δ8-ΤΗΟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Cannabinoids    | Moisture Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Foreign Mat                                                                                                                                                                                                                  | ter Internal Standard<br>Normalization                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Moisture Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Foreign Mat                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      | оле-тнс<br>by HPLC-PDA an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Moisture Conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | Normalization                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                      | by HPLC-PDA an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d GC-MS/MS            | Q <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result                                                                                                                                                                                                                          | Normalization                                                                                                                                                                                                                                                       |
| Cannabinoids                                                                                                                                                                                                         | by HPLC-PDA an<br>LOD<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d GC-MS/MS            | DQ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result<br>(% dry)                                                                                                                                                                                                               | Normalization<br>Result<br>(mg/g dry)                                                                                                                                                                                                                               |
| Cannabinoids<br>Malyte                                                                                                                                                                                               | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d GC-MS/MS            | <b>DQ</b><br>%)<br>284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result<br>(% dry)<br>ND                                                                                                                                                                                                         | Normalization<br>Result<br>(mg/g dry)<br>ND                                                                                                                                                                                                                         |
| Cannabinoids<br>nalyte<br>BC<br>BCA                                                                                                                                                                                  | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d GC-MS/MS            | <b>OQ</b><br>(%)<br>284<br>543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result<br>(% dry)<br>ND<br>0.0725                                                                                                                                                                                               | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725                                                                                                                                                                                                                |
| Cannabinoids<br>analyte<br>BC<br>BCA<br>BCV                                                                                                                                                                          | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d GC-MS/MS            | <b>DQ</b><br>(%)<br>284<br>543<br>D18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result<br>(% dry)<br>ND<br>0.0725<br>ND                                                                                                                                                                                         | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND                                                                                                                                                                                                          |
| Cannabinoids<br>malyte<br>BC<br>BCA<br>BCV<br>BD                                                                                                                                                                     | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d GC-MS/MS            | <b>DQ</b><br>(%)<br>284<br>543<br>D18<br>242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND                                                                                                                                                                             | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND                                                                                                                                                                                              |
| Cannabinoids<br>analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA                                                                                                                                                             | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d GC-MS/MS            | <b>DQ</b><br>(%)<br>284<br>543<br>018<br>242<br>242<br>013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND                                                                                                                                                                             | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                  |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV                                                                                                                                                      | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d GC-MS/MS            | <b>DQ</b><br>284<br>543<br>018<br>242<br>013<br>0182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result<br>(% dry)       ND       0.0725       ND       ND       ND       ND       ND       ND       ND       ND                                                                                                                 | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                      |
| Cannabinoids<br>analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV<br>BDV<br>BDVA                                                                                                                                       | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.0061<br>0.0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d GC-MS/MS            | <b>PQ</b><br>284<br>543<br>D18<br>242<br>D13<br>D182<br>063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                     | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV<br>BDVA<br>BG                                                                                                                                        | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.0061<br>0.0021<br>0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d GC-MS/MS            | <b>DQ</b><br>284<br>543<br>D18<br>242<br>D13<br>1182<br>063<br>1172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642                                                                                                                                                  | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>6.43                                                                                                                                                              |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV<br>BDVA<br>BC<br>BCA                                                                                                                                 | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.001<br>0.0021<br>0.0057<br>0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d GC-MS/MS            | <b>2</b> Q<br><b>2</b> 84<br>543<br>518<br>242<br>513<br>182<br>063<br>172<br>147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49                                                                                                                                    | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.43<br>44.9                                                                                                                                                            |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BCA<br>BCA<br>BCA                                                                                             | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.001<br>0.0021<br>0.0057<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059<br>0.0059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d GC-MS/MS            | <b>PQ</b><br>284<br>543<br>018<br>242<br>013<br>0182<br>063<br>0172<br>1147<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432                                                                                                                                | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>6.43<br>44.9<br>0.432                                                                                                                                                   |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BL                                                                                                     | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.001<br>0.0021<br>0.0057<br>0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d GC-MS/MS            | <b>DQ</b><br>284<br>543<br>018<br>242<br>013<br>1182<br>063<br>1172<br>1147<br>1335<br>1371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND                                                                                                                          | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.43<br>44.9                                                                                                                                                            |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BD<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BCA<br>BCA<br>BCA                                                                                             | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0124<br>0,0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d GC-MS/MS            | <b>PQ</b><br>284<br>543<br>018<br>242<br>013<br>0182<br>063<br>0172<br>1147<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432                                                                                                                                | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>6.43<br>44.9<br>0.432                                                                                                                                                   |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BL                                                                                                     | by HPLC-PDA an<br>LOD<br>(%)<br>0.0095<br>0.0181<br>0.006<br>0.0081<br>0.0043<br>0.0043<br>0.0021<br>0.0021<br>0.0057<br>0.0049<br>0.012<br>0.012<br>0.0124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d GC-MS/MS            | <b>DQ</b><br>284<br>543<br>018<br>242<br>013<br>1182<br>063<br>1172<br>1147<br>1335<br>1371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND                                                                                                                          | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.432<br>ND                                                                                                                                                                   |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BN                                                                                              | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0124<br>0,0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d GC-MS/MS            | <b>PQ</b><br>284<br>543<br>D18<br>242<br>D13<br>D182<br>063<br>D172<br>1447<br>335<br>1371<br>169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200                                                                                                 | Normalization<br>Result<br>(mg/g dry)<br>ND<br>0.725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.432<br>ND<br>0.432<br>ND<br>2.00                                                                                                                                            |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCA<br>BCV<br>BDA<br>BDA<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BN<br>BNA<br>BNA<br>BT                                                     | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0124<br>0,0056<br>0,006<br>0,018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d GC-MS/MS            | <b>Q</b> 284   543   518   242   513   1182   063   1172   1147   1335   1371   169   0181   054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.136                                                                                        | Result<br>(mg/g dry)       ND       0.725       ND       0.432       ND       2.00       ND       1.36                                                           |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCA<br>BCV<br>BDA<br>BDA<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BLA<br>BN<br>BNA<br>BT<br>44,8-iso-THC                                     | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0057<br>0,0049<br>0,012<br>0,0124<br>0,0056<br>0,006<br>0,018<br>0,0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     3355     1371     169     0181     054     002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909                                                                | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09                                                                                                                        |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BL<br>BLA<br>BN<br>BNA<br>BT<br>44.8-iso-THC<br>8-iso-THC                                       | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0124<br>0,0056<br>0,006<br>0,018<br>0,0067<br>0,00067<br>0,00067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d GC-MS/MS            | OQ   284   543   518   242   013   1182   063   1172   1147   335   1371   169   0181   054   002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140                                                       | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40                                                                                                             |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA                                                            | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0056<br>0,0057<br>0,0057<br>0,0056<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0056<br>0,0057<br>0,0057<br>0,0057<br>0,0056<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,                                                      | d GC-MS/MS            | <b>Q</b> 284   543   D18   242   D13   D182   063   0172   147   335   1371   169   D181   054   002   0312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>127                               | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127                                                                                                   |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BA<br>BN<br>BNA<br>BR<br>BNA<br>BT<br>4,8-iso-THC<br>8-THC<br>8-THCV                                         | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,0067<br>0,00067<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,0104<br>0,00067<br>0,0104<br>0,00067<br>0,0104<br>0,00067<br>0,0104<br>0,00067<br>0,0104<br>0,00067<br>0,005<br>0,0181<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005<br>0,005 | d GC-MS/MS            | <b>Q</b> 284   543   518   242   513   1182   063   1172   1147   335   1371   169   0181   054   002   0312   002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>12.7<br>0.138                                      | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38                                           |
| Cannabinoids<br>Analyte<br>BC<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>B                                         | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,0067<br>0,0067<br>0,0007<br>0,0104<br>0,00076<br>0,0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     335     1371     169     0181     054     002     0312     002     0312     002     2312     002     227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>12.7<br>0.138<br>0.319                             | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19                                |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BL<br>BLA<br>BN<br>BNA<br>BT<br>4,8-iso-THC<br>8-THC<br>8-THCV<br>9-THC<br>9-THCA               | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,0067<br>0,0067<br>0,0067<br>0,0067<br>0,0104<br>0,0067<br>0,0067<br>0,0104<br>0,0067<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0077<br>0,0076<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,007                                                        | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     335     1371     169     0181     054     002     002     0312     002     032     0312     002     032     0312     002     032     0312     002     032     0312     032     032     032     032     032     032     032     032     032     032     032     033     033     040     054     054     053     054     053     054     054     0554     055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>12.7<br>0.138<br>0.319<br>0.0593 | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.593                    |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>B                                                      | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0056<br>0,0067<br>0,0056<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,00677<br>0,0069<br>0,0058<br>0,00677<br>0,00677<br>0,0067<br>0,00677<br>0,00677<br>0,00677<br>0,00677<br>0,00677<br>0,00677<br>0,00677<br>0,0076<br>0,00677<br>0,00677<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0                                                        | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     335     1371     169     0181     054     002     002     0312     002     0312     002     0312     002     0312     002     0312     002     032     0312     002     032     032     032     032     032     032     032     032     032     0314     032     03312     0332     0332     0333     0334     0354     0354     0354     0354     0355     3355     335 <td>Result<br/>(% dry)<br/>ND<br/>0.0725<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>0.642<br/>4.49<br/>0.0432<br/>ND<br/>0.0432<br/>ND<br/>0.200<br/>ND<br/>0.200<br/>ND<br/>0.136<br/>0.909<br/>0.140<br/>12.7<br/>0.138<br/>0.319<br/>0.0593<br/>ND</td> <td>Result<br/>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.593       ND</td> | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>12.7<br>0.138<br>0.319<br>0.0593<br>ND             | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.593       ND           |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDA<br>BDV<br>BDVA<br>BC<br>BCA<br>BL<br>BLA<br>BR<br>BLA<br>BN<br>BNA<br>BT<br>4,8-iso-THC<br>8-THC<br>8-THCV<br>9-THCA<br>9-THCV<br>9-THCV<br>9-THCVA | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0043<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,0067<br>0,0067<br>0,0067<br>0,0067<br>0,0104<br>0,0067<br>0,0067<br>0,0104<br>0,0067<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0077<br>0,0076<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0075<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,007                                                        | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     335     1371     169     0181     054     002     002     0312     002     032     0312     002     032     0312     002     032     0312     002     032     0312     032     032     032     032     032     032     032     032     032     032     032     033     033     040     054     054     053     054     053     054     054     0554     055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>127<br>0.138<br>0.319<br>0.0593<br>ND<br>ND<br>ND        | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.5933       ND       ND |
| Cannabinoids<br>Analyte<br>BC<br>BCA<br>BCV<br>BDA<br>BDA<br>BDV<br>BDVA<br>BDV<br>BDVA<br>BC<br>BCA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>BA<br>B                                                      | by HPLC-PDA an<br>LOD<br>(%)<br>0,0095<br>0,0181<br>0,006<br>0,0081<br>0,0043<br>0,0043<br>0,0021<br>0,0057<br>0,0049<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0124<br>0,0056<br>0,006<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0057<br>0,0056<br>0,0067<br>0,0056<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,0067<br>0,0058<br>0,00677<br>0,0069<br>0,0058<br>0,00677<br>0,00677<br>0,0067<br>0,0067<br>0,00677<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0076<br>0,0                                                      | d GC-MS/MS            | <b>Q</b> 284     543     518     242     013     182     063     1172     1147     335     1371     169     0181     054     002     002     0312     002     0312     002     0312     002     0312     002     0312     002     032     0312     002     032     032     032     032     032     032     032     032     032     0314     032     03312     0332     0332     0333     0334     0354     0354     0354     0354     0355     3355     335 <td>Result<br/>(% dry)<br/>ND<br/>0.0725<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>0.642<br/>4.49<br/>0.0432<br/>ND<br/>0.0432<br/>ND<br/>0.200<br/>ND<br/>0.200<br/>ND<br/>0.136<br/>0.909<br/>0.140<br/>12.7<br/>0.138<br/>0.319<br/>0.0593<br/>ND</td> <td>Result<br/>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.593       ND</td> | Result<br>(% dry)<br>ND<br>0.0725<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.642<br>4.49<br>0.0432<br>ND<br>0.0432<br>ND<br>0.200<br>ND<br>0.200<br>ND<br>0.136<br>0.909<br>0.140<br>12.7<br>0.138<br>0.319<br>0.0593<br>ND             | Result<br>(mg/g dry)       ND       0.725       ND       ND       ND       ND       ND       ND       ND       ND       ND       0.432       ND       2.00       ND       1.36       9.09       1.40       127       1.38       3.19       0.593       ND           |

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit;  $\Delta$  = Delta; Total  $\Delta$ 9-THC =  $\Delta$ 9-THCA \* 0.877 +  $\Delta$ 9-THC; Total CBD = CBDA \* 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 05/25/2024

Tested By: Scott Caudill Laboratory Manager Date: 05/24/2024



This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.